Evaluation of apoptosis and angiogenesis in ectopic and eutopic stromal cells of patients with endometriosis compared to non-endometriotic controls

Abstract

Background: Endometriosis is a chronic, painful, and inflammatory disease characterized by extra-uterine growth of endometrial tissues. Increased angiogenesis and resistance to apoptosis have been suggested to be involved in pathogenesis and development of endometriosis. The objective of this study was to examine apoptosis potential and angiogenesis contribution of eutopic (EuESCs) and ectopic (EESCs) endometrial stromal cells in patients with endometriosis compared to endometrial stromal cells from non-endometriotic controls (CESCs). Methods: Stromal cells were isolated by enzymatic digestion of ectopic (n = 11) and eutopic (n = 17) endometrial tissues from laparoscopically-confirmed endometriotic patients. Endometrial stromal cells of 15 non-endometriotic patients served as control. Following cell characterization by immunofluorescent staining and flow cytometry using a panel of antibodies, the total RNA was isolated from the cultured cells, and analyzed for the expression of genes involved in apoptosis (Bcl-2, Bcl-xL, Bax, and caspase-3) and angiogenesis vascular endothelial growth factor-A (VEGF-A) and hepatocyte growth factor (HGF) by Real-time PCR. Results: Significantly higher gene expression levels of Bcl-2 and Bcl-xL were found in EESCs compared with EuESCs and CESCs (p < 0.01). The gene expression of Bax in EESCs, EuESCs, and CESCs was not statistically significant. Furthermore, EuESCs exhibited a significantly lower caspase-3 gene expression compared with CESCs (p < 0.01) or EESCs (p < 0.05). Regarding angiogenesis, VEGF-A gene expression in EESCs (p < 0.001) and EuESCs (p < 0.05) were significantly higher compared with those of CESCs. EESCs exhibited a significantly higher HGF gene expression compared with EuESCs (p < 0.05). Conclusions: These findings suggest reduced propensity to apoptosis and increased angiogenesis potential of EESCs, which may be involved in pathogenesis of endometriosis. © 2020 The Author(s)

    Similar works