This paper gives an introduction and brief overview of some of our recent
work on the equilibrium thermodynamics of glasses. We have focused onto first
principle computations in simple fragile glasses, starting from the two body
interatomic potential. A replica formulation translates this problem into that
of a gas of interacting molecules, each molecule being built of m atoms, and
having a gyration radius (related to the cage size) which vanishes at zero
temperature. We use a small cage expansion, valid at low temperatures, which
allows to compute the cage size, the specific heat (which follows the Dulong
and Petit law), and the configurational entropy. The no-replica interpretation
of the computations is also briefly described. The results, particularly those
concerning the Kauzmann tempaerature and the configurational entropy, are
compared to recent numerical simulations.Comment: 21 pages, 6 figures, to appear in the proceedings of the Trieste
workshop on "Unifying Concepts in Glass Physics