thesis

SOUND SYNTHESIS WITH CELLULAR AUTOMATA

Abstract

This thesis reports on new music technology research which investigates the use of cellular automata (CA) for the digital synthesis of dynamic sounds. The research addresses the problem of the sound design limitations of synthesis techniques based on CA. These limitations fundamentally stem from the unpredictable and autonomous nature of these computational models. Therefore, the aim of this thesis is to develop a sound synthesis technique based on CA capable of allowing a sound design process. A critical analysis of previous research in this area will be presented in order to justify that this problem has not been previously solved. Also, it will be discussed why this problem is worthwhile to solve. In order to achieve such aim, a novel approach is proposed which considers the output of CA as digital signals and uses DSP procedures to analyse them. This approach opens a large variety of possibilities for better understanding the self-organization process of CA with a view to identifying not only mapping possibilities for making the synthesis of sounds possible, but also control possibilities which enable a sound design process. As a result of this approach, this thesis presents a technique called Histogram Mapping Synthesis (HMS), which is based on the statistical analysis of CA evolutions by histogram measurements. HMS will be studied with four different automatons, and a considerable number of control mechanisms will be presented. These will show that HMS enables a reasonable sound design process. With these control mechanisms it is possible to design and produce in a predictable and controllable manner a variety of timbres. Some of these timbres are imitations of sounds produced by acoustic means and others are novel. All the sounds obtained present dynamic features and many of them, including some of those that are novel, retain important characteristics of sounds produced by acoustic means

    Similar works