Noise-induced hearing loss due to impaired proliferation of peroxisomes

Abstract

A deficiency of pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of deafness. Pejvakin-deficient (Pjvk-/-) mice also exhibited variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggested a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation showed that the cochlear sensory hair cells and auditory pathway neurons of Pjvk-/- mice and patients were exceptionally vulnerable to sound. Pjvk-/- cochleas displayed features of marked oxidative stress and impaired anti-oxidant defenses. We showed that pejvakin is associated with peroxisomes, and is required for the oxidative stress-induced proliferation of these organelles. In Pjvk-/- hair cells, peroxisomes displayed structural abnormalities after the onset of hearing. Noise-exposure of wild-type mice rapidly upregulated Pjvk cochlear transcription, and triggered peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the anti-oxidant activity of peroxisomes protects the auditory system against noise-induced damage. Pjvk gene transfer can rescue auditory dysfunction in Pjvk-/- mice.ANR – NKTH “HearDeafTreat” 2010 - INTB - 1402-01; French state program ‘‘Investissements d’Avenir’’ (ANR-10-LABX-65)

    Similar works

    Full text

    thumbnail-image