Word-level translational equivalences can be extracted from parallel texts by
surprisingly simple statistical techniques. However, these techniques are
easily fooled by {\em indirect associations} --- pairs of unrelated words whose
statistical properties resemble those of mutual translations. Indirect
associations pollute the resulting translation lexicons, drastically reducing
their precision. This paper presents an iterative lexicon cleaning method. On
each iteration, most of the remaining incorrect lexicon entries are filtered
out, without significant degradation in recall. This lexicon cleaning technique
can produce translation lexicons with recall and precision both exceeding 90\%,
as well as dictionary-sized translation lexicons that are over 99\% correct.Comment: PostScript file, 10 pages. To appear in Proceedings of AMTA-9