Secure and Energy-Efficient Processors

Abstract

Security has become an essential part of digital information storage and processing. Both high-end and low-end applications, such as data centers and Internet of Things (IoT), rely on robust security to ensure proper operation. Encryption of information is the primary means for enabling security. Among all encryption standards, Advanced Encryption Standard (AES) is a widely adopted cryptographic algorithm, due to its simplicity and high security. Although encryption standards in general are extremely difficult to break mathematically, they are vulnerable to so-called side channel attacks, which exploit electrical signatures of operating chips, such as power trace or magnetic field radiation, to crack the encryption. Differential Power Analysis (DPA) attack is a representative and powerful side-channel attack method, which has demonstrated high effectiveness in cracking secure chips. This dissertation explores circuits and architectures that offer protection against DPA attacks in high-performance security applications and in low-end IoT applications. The effectiveness of the proposed technologies is evaluated. First, a 128-bit Advanced Encryption Standard (AES) core for high-performance security applications is designed, fabricated and evaluated in a 65nm CMOS technology. A novel charge-recovery logic family, called Bridge Boost Logic (BBL), is introduced in this design to achieve switching-independent energy dissipation and provide intrinsic high resistance against DPA attacks. Based on measurements, the AES core achieves a throughput of 16.90Gbps and power consumption of 98mW, exhibiting 720x higher DPA resistance and 30% lower power than a conventional CMOS counterpart implemented on the same die and operated at the same clock frequency. Second, an AES core designed for low-cost and energy-efficient IoT security applications is designed and fabricated in a 65nm CMOS technology. A novel Dual-Rail Flush Logic (DRFL) with switching-independent power profile is used to yield intrinsic resistance against DPA attacks with minimum area and energy consumption. Measurement results show that this 0.048mm2 core achieves energy consumption as low as 1.25pJ/bit, while providing at least 2604x higher DPA resistance over its conventional CMOS counterpart on the same die, marking the smallest, most energy-efficient and most secure full-datapath AES core published to date.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138791/1/luss_1.pd

    Similar works

    Full text

    thumbnail-image