From observations collected with the ESPaDOnS spectropolarimeter, we report
the discovery of magnetic fields at the surface of the mildly accreting
classical T Tauri star V2129 Oph. Zeeman signatures are detected, both in
photospheric lines and in the emission lines formed at the base of the
accretion funnels linking the disc to the protostar, and monitored over the
whole rotation cycle of V2129 Oph. We observe that rotational modulation
dominates the temporal variations of both unpolarized and circularly polarized
line profiles. We reconstruct the large-scale magnetic topology at the surface
of V2129 Oph from both sets of Zeeman signatures simultaneously. We find it to
be rather complex, with a dominant octupolar component and a weak dipole of
strengths 1.2 and 0.35 kG, respectively, both slightly tilted with respect to
the rotation axis. The large-scale field is anchored in a pair of 2-kG unipolar
radial field spots located at high latitudes and coinciding with cool dark
polar spots at photospheric level. This large-scale field geometry is unusually
complex compared to those of non-accreting cool active subgiants with moderate
rotation rates. As an illustration, we provide a first attempt at modelling the
magnetospheric topology and accretion funnels of V2129 Oph using field
extrapolation. We find that the magnetosphere of V2129 Oph must extend to about
7R* to ensure that the footpoints of accretion funnels coincide with the
high-latitude accretion spots on the stellar surface. It suggests that the
stellar magnetic field succeeds in coupling to the accretion disc as far out as
the corotation radius, and could possibly explain the slow rotation of V2129
Oph. The magnetospheric geometry we derive produces X-ray coronal fluxes
typical of those observed in cTTSs.Comment: MNRAS, in press (18 pages, 17 figures