Abstract

We study the propagation of localised disturbances in a turbulent, but momentarily quiescent and unforced shell model (an approximation of the Navier-Stokes equations on a set of exponentially spaced momentum shells). These disturbances represent bursts of turbulence travelling down the inertial range, which is thought to be responsible for the intermittency observed in turbulence. Starting from the GOY shell model, we go to the limit where the distance between succeeding shells approaches zero (``the zero spacing limit'') and helicity conservation is retained. We obtain a discrete field theory which is numerically shown to have pulse solutions travelling with constant speed and with unchanged form. We give numerical evidence that the model might even be exactly integrable, although the continuum limit seems to be singular and the pulses show an unusual super exponential decay to zero as exp(constσn)\exp(- \mathrm{const} \sigma^n) when nn \to \infty, where σ\sigma is the {\em golden mean}. For finite momentum shell spacing, we argue that the pulses should accelerate, moving to infinity in a finite time. Finally we show that the maximal Lyapunov exponent of the GOY model approaches zero in this limit.Comment: 27 pages, submitted for publicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 15/03/2019