The theory of fully developed turbulence is usually considered in an
idealized homogeneous and isotropic state. Real turbulent flows exhibit the
effects of anisotropic forcing. The analysis of correlation functions and
structure functions in isotropic and anisotropic situations is facilitated and
made rational when performed in terms of the irreducible representations of the
relevant symmetry group which is the group of all rotations SO(3). In this
paper we firstly consider the needed general theory and explain why we expect
different (universal) scaling exponents in the different sectors of the
symmetry group. We exemplify the theory context of isotropic turbulence (for
third order tensorial structure functions) and in weakly anisotropic turbulence
(for the second order structure function). The utility of the resulting
expressions for the analysis of experimental data is demonstrated in the
context of high Reynolds number measurements of turbulence in the atmosphere.Comment: 35 pages, REVTEX, 1 figure, Phys. Rev. E, submitte