research

Viscosity of Colloidal Suspensions

Abstract

Simple expressions are given for the Newtonian viscosity ηN(ϕ)\eta_N(\phi) as well as the viscoelastic behavior of the viscosity η(ϕ,ω)\eta(\phi,\omega) of neutral monodisperse hard sphere colloidal suspensions as a function of volume fraction ϕ\phi and frequency ω\omega over the entire fluid range, i.e., for volume fractions 0<ϕ<0.550 < \phi < 0.55. These expressions are based on an approximate theory which considers the viscosity as composed as the sum of two relevant physical processes: η(ϕ,ω)=η(ϕ)+ηcd(ϕ,ω)\eta (\phi,\omega) = \eta_{\infty}(\phi) + \eta_{cd}(\phi,\omega), where η(ϕ)=η0χ(ϕ)\eta_{\infty}(\phi) = \eta_0 \chi(\phi) is the infinite frequency (or very short time) viscosity, with η0\eta_0 the solvent viscosity, χ(ϕ)\chi(\phi) the equilibrium hard sphere radial distribution function at contact, and ηcd(ϕ,ω)\eta_{cd}(\phi,\omega) the contribution due to the diffusion of the colloidal particles out of cages formed by their neighbors, on the P\'{e}clet time scale τP\tau_P, the dominant physical process in concentrated colloidal suspensions. The Newtonian viscosity ηN(ϕ)=η(ϕ,ω=0)\eta_N(\phi) = \eta(\phi,\omega = 0) agrees very well with the extensive experiments of Van der Werff et al and others. Also, the asymptotic behavior for large ω\omega is of the form η(ϕ)+A(ϕ)(ωτP)1/2\eta_{\infty}(\phi) + A(\phi)(\omega \tau_P)^{-1/2}, in agreement with these experiments, but the theoretical coefficient A(ϕ)A(\phi) differs by a constant factor 2/χ(ϕ)2/\chi(\phi) from the exact coefficient, computed from the Green-Kubo formula for η(ϕ,ω)\eta(\phi,\omega). This still enables us to predict for practical purposes the visco-elastic behavior of monodisperse spherical colloidal suspensions for all volume fractions by a simple time rescaling.Comment: 51 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019
    Last time updated on 09/03/2017