Abstract

This paper is concerned with the study of one-body dissipation effects in idealized models resembling a nucleus. In particular, we study the quantum mechanics of a free particle that collides elastically with the slowly moving walls of a Bunimovich stadium billiard. Our results are twofold. First, we develop a method to solve in a simple way the quantum mechanical evolution of planar billiards with moving walls. The formalism is based on the {\it scaling method} \cite{ver} which enables the resolution of the problem in terms of quantities defined over the boundary of the billiard. The second result is related to the quantum aspects of dissipation in systems with complex spectra. We conclude that in a slowly varying evolution the energy is transferred from the boundary to the particle through Landau-Zener transitions.Comment: 24 pages (including 7 postcript figures), Revtex. Submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020