Sound driven gas bubbles in water can emit light pulses. This phenomenon is
called sonoluminescence (SL). Two different phases of single bubble SL have
been proposed: diffusively stable and diffusively unstable SL. We present phase
diagrams in the gas concentration vs forcing pressure state space and also in
the ambient radius vs gas concentration and vs forcing pressure state spaces.
These phase diagrams are based on the thresholds for energy focusing in the
bubble and two kinds of instabilities, namely (i) shape instabilities and (ii)
diffusive instabilities. Stable SL only occurs in a tiny parameter window of
large forcing pressure amplitude Pa∼1.2−1.5atm and low gas
concentration of less than 0.4% of the saturation. The upper concentration
threshold becomes smaller with increasing forcing. Our results quantitatively
agree with experimental results of Putterman's UCLA group on argon, but not on
air. However, air bubbles and other gas mixtures can also successfully be
treated in this approach if in addition (iii) chemical instabilities are
considered. -- All statements are based on the Rayleigh-Plesset ODE
approximation of the bubble dynamics, extended in an adiabatic approximation to
include mass diffusion effects. This approximation is the only way to explore
considerable portions of parameter space, as solving the full PDEs is
numerically too expensive. Therefore, we checked the adiabatic approximation by
comparison with the full numerical solution of the advection diffusion PDE and
find good agreement.Comment: Phys. Fluids, in press; latex; 46 pages, 16 eps-figures, small
figures tarred and gzipped and uuencoded; large ones replaced by dummies;
full version can by obtained from: http://staff-www.uni-marburg.de/~lohse