research

Multiobjective Monte Carlo Tree Search for Real-Time Games

Abstract

Multiobjective optimization has been traditionally a matter of study in domains like engineering or finance, with little impact on games research. However, action-decision based on multiobjective evaluation may be beneficial in order to obtain a high quality level of play. This paper presents a multiobjective Monte Carlo tree search algorithm for planning and control in real-time game domains, those where the time budget to decide the next move to make is close to 40 ms. A comparison is made between the proposed algorithm, a single-objective version of Monte Carlo tree search and a rolling horizon implementation of nondominated sorting evolutionary algorithm II (NSGA-II). Two different benchmarks are employed, deep sea treasure (DST) and the multiobjective physical traveling salesman problem (MO-PTSP). Using the same heuristics on each game, the analysis is focused on how well the algorithms explore the search space. Results show that the algorithm proposed outperforms NSGA-II. Additionally, it is also shown that the algorithm is able to converge to different optimal solutions or the optimal Pareto front (if achieved during search)

    Similar works