CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains
Authors
Pablo Borja
Gerard Govers
Armando Molina
Veerle Vanacker
Publication date
1 June 2018
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2018 Elsevier B.V. Gully erosion is an important process of land degradation in mountainous regions, and is known to be one of the major sediment sources in eroded catchments. Recent studies have suggested that living and dead vegetation can be effective for ecosystem restoration, and large-scale restoration projects have been implemented in the tropical Andes in recent decades. However, few quantitative studies exist on the effectiveness of gully restoration to reduce sediment production and mobilization. In this study, sediment mobilization and transport was studied in five micro-catchments (70%) of the amount of sediment exported from the micro-catchments. The construction of wooden barriers (or so-called check dams) in active gully channels enhances sediment deposition in the gully bed. The latter is strongly dependent on the rainfall intensity, as well as gully channel slope and vegetation cover. The experimental data suggest that there exists a threshold value of rainfall intensity (I30max) of about 23 mm h−1, above which all sections of the gully system are actively contributing water and sediment to the river network. Also, forestation of active gully systems with rapidly growing exotic species such as Eucalyptus has a positive effect on the stabilization and restoration of the badlands, and effectively reduces the sediment export.status: publishe
Similar works
Full text
Available Versions
Lirias
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:lirias2repo.kuleuven.be:12...
Last time updated on 03/09/2020