Branch-and-Refine zur Lösung zeitabhängiger Probleme

Abstract

Einer der Standardansätze zur Lösung zeitabhängiger diskreter Optimierungsprobleme, wie z.B. das Problem des Handlungsreisenden mit Zeitfenstern oder das Kürzeste Wege Problem mit Zeitfenstern, ist die Herleitung einer sogenannten zeitindizierten Formulierung. Wenn dem Problem eine Struktur zu Grunde liegt, die durch einen Graphen beschrieben werden kann, basiert die zeitindizierte Formulierung normalerweise auf einem anderen, erweiterten Graphen, der in der Literatur als zeitexpandierter Graph bezeichnet wird. Der zeitexpandierte Graph kann oft so generiert werden, dass alle Zeitbeschränkungen bereits aufgrund seiner Topologie erfüllt sind und somit Algorithmen für die entsprechende zeitunabhängige Variante angewendet werden können. Der Nachteil dieses Ansatzes ist, dass die Mengen der Ecken und Bögen des zeitexpandierten Graphen viel größer sind als die des ursprünglichen Graphen. In neueren Arbeiten hat sich jedoch gezeigt, dass für viele praktische Anwendungen eine partielle Expandierung des Graphen, die möglicherweise zeitunmögliche Pfade zulässt, oft ausreicht, um eine beweisbar optimale Lösung zu finden. Diese Ansätze verfeinern iterativ den ursprünglichen Graphen und lösen in jeder Iteration eine Relaxierung der zeitexpandierten Formulierung. Wenn die Lösung der aktuellen Relaxation alle Zeitbeschränkungen erfüllt, kann daraus eine optimale Lösung abgeleitet werden, und der Algorithmus terminiert. In dieser Arbeit stellen wir neue Ideen vor, die das Übertragen von Informationen über die optimale Lösung eines gröberen Graphen zu einem verfeinerten Graphen ermöglichen und zeigen, wie diese in Algorithmen verwendet werden können. Genauer gesagt stellen wir einen neuen Algorithmus zur Lösung von MILP-Formulierungen (Mixed Integer Linear Program) von zeitabhängigen Problemen vor, der es ermöglicht, die Graphenverfeinerung während der Untersuchung des Branch-and-Bound Baums durchzuführen, anstatt jedes Mal neu zu starten, wenn die optimale Lösung sich als nicht zulässig herausgestellt hat. Um die praktische Relevanz dieses Algorithmus zu demonstrieren, präsentieren wir Ergebnisse von numerische Experimenten seiner Anwendung auf das Kürzeste Wege Problem mit Zeitfenstern und das Problem des Handlungsreisenden mit Zeitfenstern.One of the standard approaches for solving time-dependent discrete optimization problems, such as the travelling salesman problem with time-windows or the shortest path problem with time-windows is to derive a so-called time-indexed formulation. If the problem has an underlying structure that can be described by a graph, the time-indexed formulation is usually based on a different, extended graph, commonly referred to as the time-expanded graph. The time-expanded graph can often be derived in such a way that all time constraints are incorporated in its topology, and therefore algorithms for the corresponding time-independent variant become applicable. The downside of this approach is, that the sets of vertices and arcs of the time-expanded graph are much larger than the ones of the original graph. In recent works, however, it has been shown that for many practical applications a partial graph expansion, that might contain time infeasible paths, often suffices to find a proven optimal solution. These approaches, instead, iteratively refine the original graph and solve a relaxation of the time-expanded formulation in each iteration. When the solution of the current relaxation is time feasible an optimal solution can be derived from it and the algorithm terminates. In this work we present new ideas, that allow for the propagation of information about the optimal solution of a coarser graph to a more refined graph and show how these can be used in algorithms, which are based on graph refinement. More precisely we present a new algorithm for solving Mixed Integer Linear Program (MILP) formulations of time-dependent problems that allows for the graph refinement to be carried out during the exploration of the branch-and-bound tree instead of restarting whenever the optimal solution was found to be infeasible. For demonstrating the practical relevance of this algorithm we present numerical results on its application to the shortest path problem with time-windows and the traveling salesman problem with time-windows

    Similar works