A lower bound on HMOLS with equal sized holes

Abstract

It is known that N(n)N(n), the maximum number of mutually orthogonal latin squares of order nn, satisfies the lower bound N(n)n1/14.8N(n) \ge n^{1/14.8} for large nn. For h2h\ge 2, relatively little is known about the quantity N(hn)N(h^n), which denotes the maximum number of `HMOLS' or mutually orthogonal latin squares having a common equipartition into nn holes of a fixed size hh. We generalize a difference matrix method that had been used previously for explicit constructions of HMOLS. An estimate of R.M. Wilson on higher cyclotomic numbers guarantees our construction succeeds in suitably large finite fields. Feeding this into a generalized product construction, we are able to establish the lower bound N(hn)(logn)1/δN(h^n) \ge (\log n)^{1/\delta} for any δ>2\delta>2 and all n>n0(h,δ)n > n_0(h,\delta)

    Similar works

    Full text

    thumbnail-image