The projective cover of tableau-cyclic indecomposable Hn(0)H_n(0)-modules

Abstract

Let α\alpha be a composition of nn and σ\sigma a permutation in Sℓ(α)\mathfrak{S}_{\ell(\alpha)}. This paper concerns the projective covers of Hn(0)H_n(0)-modules Vα\mathcal{V}_\alpha, XαX_\alpha and Sασ\mathbf{S}^\sigma_{\alpha}, which categorify the dual immaculate quasisymmetric function, the extended Schur function, and the quasisymmetric Schur function when σ\sigma is the identity, respectively. First, we show that the projective cover of Vα\mathcal{V}_\alpha is the projective indecomposable module Pα\mathbf{P}_\alpha due to Norton, and XαX_\alpha and the ϕ\phi-twist of the canonical submodule Sβ,Cσ\mathbf{S}^{\sigma}_{\beta,C} of Sβσ\mathbf{S}^\sigma_{\beta} for (β,σ)(\beta,\sigma)'s satisfying suitable conditions appear as Hn(0)H_n(0)-homomorphic images of Vα\mathcal{V}_\alpha. Second, we introduce a combinatorial model for the ϕ\phi-twist of Sασ\mathbf{S}^\sigma_{\alpha} and derive a series of surjections starting from Pα\mathbf{P}_\alpha to the ϕ\phi-twist of Sα,Cid\mathbf{S}^{\mathrm{id}}_{\alpha,C}. Finally, we construct the projective cover of every indecomposable direct summand Sα,Eσ\mathbf{S}^\sigma_{\alpha, E} of Sασ\mathbf{S}^\sigma_{\alpha}. As a byproduct, we give a characterization of triples (σ,α,E)(\sigma, \alpha, E) such that the projective cover of Sα,Eσ\mathbf{S}^\sigma_{\alpha, E} is indecomposable.Comment: 41 page

    Similar works

    Full text

    thumbnail-image

    Available Versions