The dynamical signatures of the interaction between galaxies in clusters and
the intracluster medium (ICM) can potentially yield significant information
about the structure and dynamical history of clusters. To develop our
understanding of this phenomenon we present results from numerical modelling of
the galaxy/ICM interaction, as the galaxy moves through the cluster. The
simulations have been performed for a broad range, of ICM temperatures (kT =
1,4 and 8 keV), representative of poor clusters or groups through to rich
clusters. There are several dynamical features that can be identified in these
simulations; for supersonic galaxy motion, a leading bow-shock is present, and
also a weak gravitationally focussed wake or tail behind the galaxy (analogous
to Bondi-Hoyle accretion). For galaxies with higher mass-replenishment rates
and a denser interstellar medium (ISM), the dominant feature is a dense
ram-pressure stripped tail. In line with other simulations, we find that the
ICM/galaxy ISM interaction can result in complex time- dependent dynamics, with
ram-pressure stripping occurring in an episodic manner. In order to facilitate
this comparison between the observational consequences of dynamical studies and
X-ray observations we have calculated synthetic X-ray flux and hardness maps
from these simulations. These calculations predict that the ram-pressure
stripped tail will usually be the most visible feature, though in nearby
galaxies the bow-shock preceding the galaxy should also be apparent in deeper
X-ray observations. We briefly discuss these results and compare with X-ray
observations of galaxies where there is evidence of such interactions.Comment: 14 pages, 8 diagrams, MNRAS (in press