research

Discovery of kHz Fluctuations in Centaurus X-3: Evidence for Photon Bubble Oscillations (PBO) and Turbulence in a High Mass X-ray Binary Pulsar

Abstract

We report the discovery of kHz fluctuations, including quasi-periodic oscillations (QPO) at ~330 Hz and ~760 Hz and a broadband kHz continuum in the power density spectrum of the high mass X-ray binary pulsar Centaurus X-3. These observations of Cen X-3 were carried out with the Rossi X-ray Timing Explorer (RXTE). The fluctuation spectrum is flat from mHz to a few Hz, then steepens to f−2f^{-2} behavior between a few Hz and ~100 Hz. Above a hundred Hz, the spectrum shows the QPO features, plus a flat continuum extending to ~1200 Hz and then falling out to ~1800 Hz. These results, which required the co-adding three days of observations of Cen X-3, are at least as fast as the fastest known variations in X-ray emission from an accreting compact object (kHz QPO in LMXB sources) and probably faster since extension to ~1800 Hz is indicated by the most likely parameterization of the data. Multi-dimensional radiation hydrodynamics simulations of optically thick plasma flow onto the magnetic poles of an accreting neutron star show that the fluctuations at frequencies above 100 Hz are consistent with photon bubble turbulence and oscillations (PBO) previously predicted to be observable in this source. For a polar cap opening angle of 0.25 radians, we show that the spectral form above 100 Hz is reproduced by the simulations, including the frequencies of the QPO and the relative power in the QPO and the kHz continuum. This has resulted in the first model-dependent measurement of the polar cap size of an X-ray pulsar.Comment: received ApJ: April 1, 1999 accepted ApJ: September 1, 199

    Similar works