Detailed models of the explosion of a white dwarf, which include
self-consistent calculations of the light curve and spectra, provide a link
between observational quantities and the underlying explosion.These
calculations assume spherical geometry and are based on parameterized
descriptions of the burning front during the deflagration phase. Recently,
first multi-dimensional calculations for nuclear burning fronts have been
performed. Although a fully consistent treatment of the burning fronts is
beyond the current state of the art, these calculations provided a new and
better understanding of the physics, and new descriptions for the flame
propagation have been proposed. Here, we have studied the influence on the
results of previous analyses of Type Ia Supernovae, namely, the nucleosynthesis
and structure of the expanding envelope. Our calculations are based on a set of
delayed detonation models with parameters that give a good account of the
optical and infrared light curves, and of the spectral evolution. In this
scenario, the burning front propagates first in a deflagration mode and,
subsequently, turns into a detonation. The explosions and light curves are
calculated using a one-dimensional Lagrangian radiation-hydro code, including a
detailed nuclear network.Comment: 9 pages, 4 figures, macros 'crckapb.sty'. The Astrophysical Journal
(accepted