Major advances in the observation and theory of cosmic microwave background
anisotropies have opened up a new era in cosmology. This has encouraged the
hope that the fundamental parameters of cosmology will be determined to high
accuracy in the near future. However, this optimism should not obscure the
ongoing need for theoretical developments that go beyond the highly successful
but simplified standard model. Such developments include improvements in
observational modelling (e.g. foregrounds, non-Gaussian features), extensions
and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic
effects, defects), and investigation of nonlinear effects. In addition to well
known nonlinear effects such as the Rees-Sciama and Ostriker-Vishniac effects,
further nonlinear effects have recently been identified. These include a
Rees-Sciama-type tensor effect, time-delay effects of scalar and tensor
lensing, nonlinear Thomson scattering effects and a nonlinear shear effect.
Some of the nonlinear effects and their potential implications are discussed.Comment: Invited contribution to Relativistic Cosmology Symposium (celebrating
the 60th year of GFR Ellis); to appear Gen. Rel. Gra