A BIM-Integrated Relational Database Management System for Evaluating Building Life-Cycle Costs

Abstract

Sustainable procurement is an important policy for mitigating environmental impacts attributing to construction projects. Life-cycle cost analysis (LCCA), which is an essential requirement in sustainable procurement, is a principal tool for evaluating the economic efficiency for the total life-cycle budget of a building project. LCCA is a complex and time-consuming process due to repetitive complicated calculations, which are based on various legal and regulatory requirements. It also requires a large amount of data from different sources throughout the project life cycle. For conventional data management systems, data are usually stored in the form of papers and are input into the systems manually. This results in data loss and inconsistent data, which subsequently contribute to inaccurate life-cycle costs (LCCs). Building information modeling (BIM) is a modern technology, which can potentially overcome the asperities of the conventional building LCCA. However, existing BIM tools cannot carry out building LCCA due to their limited capabilities. The relational database management system (RDBMS) can be integrated with BIM for organizing, storing, and exchanging LCCA data in a logical and systematic manner. In this paper, a BIM-integrated RDBMS is developed for compiling and organizing the required data and information from BIM models to compute building LCCs. The system integrates the BIM authoring program, the database management system, the spreadsheet system, and the visual programming interface. It is part of the BIM-database-integrated system for building LCCA using a multi-parametric model. It represents a new automated methodology for performing building LCCA, which can facilitate the implementation of sustainable procurement in building projects

    Similar works