Improving episodic memory: frontal-midline theta neurofeedback training increases source memory performance

Abstract

Cognitive and neurofeedback training (NFT) studies have demonstrated that training-induced alterations of frontal-midline (FM) theta activity (4-8 Hz) transfer to cognitive control processes. Given that FM theta oscillations are assumed to provide top-down control for episodic memory retrieval, especially for source retrieval, that is, accurate recollection of contextual details of prior episodes, the present study investigated whether FM theta NFT transfers to memory control processes. It was assessed (1) whether FM theta NFT improves source retrieval and modulates its underlying EEG characteristics and (2) whether this transfer extends over two posttests. Over seven NFT sessions, thetraining group who trained individual FM theta activity showed greater FM theta increase than an active control group who trained randomly chosen frequency bands. The training group showed better source retrieval in a posttraining session performed 13 days after NFT and their performance increasesfrom pre- to both posttraining sessions were predicted by NFT theta increases. Thus, training-induced enhancement of memory control processes seems to protect newly formed memories from proactive interference of previously learned information. EEG analyses revealed that during pretest both groups showed source memory specific theta activity at frontal and parietal sites. Surprisingly, training-induced improvements in source retrieval tended to be accompanied by less prestimulus FM theta activity, which was predicted by NFT theta change for the training but not the control group, suggesting a more efficient use of memory control processes after training. The present findings provide unique evidence for the enhancement of memory control processes by FM theta NFT

    Similar works