Clustering measure-valued data with Wasserstein barycenters

Abstract

In this work, learning schemes for measure-valued data are proposed, i.e. data that their structure can be more efficiently represented as probability measures instead of points on Rd\R^d, employing the concept of probability barycenters as defined with respect to the Wasserstein metric. Such type of learning approaches are highly appreciated in many fields where the observational/experimental error is significant (e.g. astronomy, biology, remote sensing, etc.) or the data nature is more complex and the traditional learning algorithms are not applicable or effective to treat them (e.g. network data, interval data, high frequency records, matrix data, etc.). Under this perspective, each observation is identified by an appropriate probability measure and the proposed statistical learning schemes rely on discrimination criteria that utilize the geometric structure of the space of probability measures through core techniques from the optimal transport theory. The discussed approaches are implemented in two real world applications: (a) clustering eurozone countries according to their observed government bond yield curves and (b) classifying the areas of a satellite image to certain land uses categories which is a standard task in remote sensing. In both case studies the results are particularly interesting and meaningful while the accuracy obtained is high.Comment: 18 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions