thesis

Decoding visemes: improving machine lip-reading

Abstract

Abstract This thesis is about improving machine lip-reading, that is, the classi�cation of speech from only visual cues of a speaker. Machine lip-reading is a niche research problem in both areas of speech processing and computer vision. Current challenges for machine lip-reading fall into two groups: the content of the video, such as the rate at which a person is speaking or; the parameters of the video recording for example, the video resolution. We begin our work with a literature review to understand the restrictions current technology limits machine lip-reading recognition and conduct an experiment into resolution a�ects. We show that high de�nition video is not needed to successfully lip-read with a computer. The term \viseme" is used in machine lip-reading to represent a visual cue or gesture which corresponds to a subgroup of phonemes where the phonemes are indistinguishable in the visual speech signal. Whilst a viseme is yet to be formally de�ned, we use the common working de�nition `a viseme is a group of phonemes with identical appearance on the lips'. A phoneme is the smallest acoustic unit a human can utter. Because there are more phonemes per viseme, mapping between the units creates a many-to-one relationship. Many mappings have been presented, and we conduct an experiment to determine which mapping produces the most accurate classi�cation. Our results show Lee's [82] is best. Lee's classi�cation also outperforms machine lip-reading systems which use the popular Fisher [48] phonemeto- viseme map. Further to this, we propose three methods of deriving speaker-dependent phonemeto- viseme maps and compare our new approaches to Lee's. Our results show the ii iii sensitivity of phoneme clustering and we use our new knowledge for our �rst suggested augmentation to the conventional lip-reading system. Speaker independence in machine lip-reading classi�cation is another unsolved obstacle. It has been observed, in the visual domain, that classi�ers need training on the test subject to achieve the best classi�cation. Thus machine lip-reading is highly dependent upon the speaker. Speaker independence is the opposite of this, or in other words, is the classi�cation of a speaker not present in the classi�er's training data. We investigate the dependence of phoneme-to-viseme maps between speakers. Our results show there is not a high variability of visual cues, but there is high variability in trajectory between visual cues of an individual speaker with the same ground truth. This implies a dependency upon the number of visemes within each set for each individual. Finally, we investigate how many visemes is the optimum number within a set. We show the phoneme-to-viseme maps in literature rarely have enough visemes and the optimal number, which varies by speaker, ranges from 11 to 35. The last di�culty we address is decoding from visemes back to phonemes and into words. Traditionally this is completed using a language model. The language model unit is either: the same as the classi�er, e.g. visemes or phonemes; or the language model unit is words. In a novel approach we use these optimum range viseme sets within hierarchical training of phoneme labelled classi�ers. This new method of classi�er training demonstrates signi�cant increase in classi�cation with a word language network

    Similar works