Microscopic turbulence-flame interactions of thermonuclear fusion flames
occuring in Type Ia Supernovae were studied by means of incompressible direct
numerical simulations with a highly simplified flame description. The flame is
treated as a single diffusive scalar field with a nonlinear source term. It is
characterized by its Prandtl number, Pr << 1, and laminar flame speed, S_L. We
find that if S_L ~ u', where u' is the rms amplitude of turbulent velocity
fluctuations, the local flame propagation speed does not significantly deviate
from S_L even in the presence of velocity fluctuations on scales below the
laminar flame thickness. This result is interpreted in the context of
subgrid-scale modeling of supernova explosions and the mechanism for
deflagration-detonation-transitions.Comment: 8 pages, 6 figures, accepted by Astrophys.