research

Infrared spectroscopic variability of Cygnus X-3 in outburst and quiescence

Abstract

We present four epochs of high-resolution infrared spectroscopy of the peculiar X-ray binary Cygnus X-3. The observations cover quiescent, small flaring and outburst states of the system as defined by radio and X-ray monitoring. The underlying infrared spectrum of the source, as observed during radio and X-ray quiescence and small flaring states, is one of broad, weak HeII and NV emission. Spectral variability in this state is dominated by modulation at the 4.8 hr orbital period of the system. H-band spectra confirm the significant hydrogen depletion of the mass donor. The closest spectral match to the quiescent infrared spectrum of Cyg X-3 is an early-type WN Wolf-Rayet star. In outburst, the infrared spectrum is dramatically different, with the appearance of very strong twin-peaked HeI emission displaying both day-to-day variability and V(iolet)/R(ed) variations with orbital phase. The most likely explanation appears to be an enhanced stellar wind from the companion. Thus X-ray and radio outbursts in this system are likely to originate in mass-transfer, and not disc, instabilities, and the lengthening of the orbital period will not be smooth but will be accelerated during these outbursts. Furthermore, the appearance of these lines is suggestive of an asymmetric emitting region. We propose that the wind in Cyg X-3 is significantly flattened in the plane of the binary orbit. This may explain the observed twin-peaked HeI features as well as reconciling a massive Wolf-Rayet secondary with the relatively small optical depth to X-rays, if the disc wind is inclined at some angle to the line of sight.Comment: 13 pages, 7 figures. Accepted for publication in MNRA

    Similar works