A large number of cosmological studies now suggest that roughly two-thirds of
the critical energy density of the Universe exists in a component with negative
pressure. If the equation of state of such an energy component varies with
time, it should in principle be possible to identify such a variation using
cosmological probes over a wide range in redshift. Proper detection of any time
variation, however, requires cosmological probes beyond the currently studied
range in redshift of ∼ 0.1 to 1. We extend our analysis to gravitational
lensing statistics at high redshift and suggest that a reliable sample of
lensed sources, out to a redshift of ∼ 5, can be used to constrain the
variation of the equation of state, provided that both the redshift
distribution of lensed sources and the selection function involved with the
lensed source discovery process are known. An exciting opportunity to catalog
an adequate sample of lensed sources (quasars) to probe quintessence is now
available with the ongoing Sloan Digital Sky Survey. Writing w(z)≈w0+z(dw/dz)0, we study the expected accuracy to which the equation of state
today w0 and its rate of change (dw/dz)0 can simultaneously be
constrained. Such a determination can rule out some missing-energy candidates,
such as classes of quintessence models or a cosmological constant.Comment: Accepted for publication in ApJ Letters (4 pages, including 4
figures