research

Fault Detection and Isolation in Industrial Processes Using Deep Learning Approaches

Abstract

Automated fault detection is an important part of a quality control system. It has the potential to increase the overall quality of monitored products and processes. The fault detection of automotive instrument cluster systems in computer- based manufacturing assembly lines is currently limited to simple boundary checking. The analysis of more complex non-linear signals is performed manually by trained operators, whose knowledge is used to supervise quality checking and manual detection of faults. In this paper, a novel approach for automated fault detection and isolation based on deep machine learning techniques is presented. The approach was tested on data generated by computer-based manufacturing systems equipped with local and remote sensing devices. The results show that the proposed approach models the different spatial / temporal patterns found in the data. The approach is also able to successfully diagnose and locate multiple classes of faults under real-time working conditions. The proposed method is shown to outperform other established fault detection and isolation methods

    Similar works