CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Design and control of a novel visco-elastic braking mechanism using HMA
Authors
,
J Bocanegra
K Gunura
F Iida
Publication date
1 December 2011
Publisher
Abstract
Many forms of actuators have been developed with the capability of braking. Most of these braking mechanisms involve numerous mechanical components, that wear with time and lose precision, furthermore the mechanism are difficult to scale down in size while maintaining relatively large holding torques. In this paper, we propose the use of an off-the-shelf economic material, Hot-Melt-Adhesive (HMA), as a brake mechanism. HMA exhibits visco-elastic characteristics and has interesting properties as it can change phases from solid to plastic to liquid and vice versa. Its advantage is that it is reusable and durable. Experiments were performed to display the holding strength as well as the HMAs visco-elasticity in its solid state as a brake mechanism. The HMA requires no constant application of power when solid, and acts as a brake and visco-elastic damper depending on temperature. Results show that HMA can add compliance and high torque braking of joints. © 2011 Springer-Verlag
Similar works
Full text
Available Versions
CUED - Cambridge University Engineering Department
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:generic.eprints.org:769213...
Last time updated on 15/07/2020