Abstract

This research describes the synthesis of an outstanding ceramic-composite piezoelectric CCP (lead-lanthanum-zirconate-titanate, PLZT) by means of powders technique procedures. Full dense CCP compacts were obtained with a platinum wire implanted in the center of the piezoelectric, which were used to investigate the microstructural and opto-thermal properties. The microstructural details of this ceramic were investigated by optical microscopy; whereas the opto-thermal characterization was performed by measuring the electrical signal in a bidimensional setup under four different temperatures: 20°C, 35°C, 50°C and 75°C. A 160mW/cm2 LASER beam was used in order to produce the optical energy which is detected by the CCP. A total of one hundred of measurements were registered. Measurements showed that, in the explored thermal range, the CCP signal magnitude increased from 87.2 to 147.2 pA. About the microstructural analysis, the microstructure obtained show different phases as characteristic of the processing method, including porosity. The peculiar optical and thermal properties observed in the piezoelectric ceramic are promising for possible applications in temperature-controlled optical devices that require electrical outputs

    Similar works