research

Radio Quiet Pulsars with Ultra-Strong Magnetic Fields

Abstract

The notable absence of radio pulsars having measured magnetic dipole surface field strengths above B03×1013B_0\sim 3\times 10^{13} Gauss naturally raises the question of whether this forms an upper limit to pulsar magnetization. Recently there has been increasing evidence that neutron stars possessing higher dipole spin-down fields do in fact exist, including a growing list of anomalous X-ray pulsars (AXPs) with long periods and spinning down with high period derivatives, implying surface fields of 101410^{14}--101510^{15} Gauss. Furthermore, the recently reported X-ray period and period derivative for the Soft Gamma-ray Repeater (SGR) source SGR1806-20 suggest a surface field around 101510^{15} Gauss. None of these high-field pulsars have yet been detected as radio pulsars. We propose that high-field pulsars should be radio-quiet because electron-positron pair production in their magnetospheres, thought to be essential for radio emission, is efficiently suppressed in ultra-strong fields (B04×1013B_0\gtrsim 4\times 10^{13} Gauss) by the action of photon splitting, a quantum electrodynamical process in which a photon splits into two. Our computed radio quiescence boundary in the radio pulsar PP˙P-\dot P diagram, where photon splitting overtakes pair creation, is located just above the boundary of the known radio pulsar population, neatly dividing them from the AXPs. We thus identify a physical mechanism that defines a new class of high-field radio-quiet neutron stars that should be detectable by their pulsed emission at X-ray and perhaps γ\gamma-ray energies.Comment: 4 pages, including one figure and one table, in AASTeX emulatapj format, Astrophysical Journal Letters, in pres

    Similar works

    Available Versions

    Last time updated on 01/04/2019