research

Stratification relieves constraints from steric hindrance in the generation of compact acto-myosin asters at the membrane cortex

Abstract

Recent in-vivo studies have revealed that several membrane proteins are driven to form nanoclusters by active contractile flows arising from F-actin and myosin at the cortex. The mechanism of clustering was shown to be arising from the dynamic patterning of transient contractile platforms (asters) generated by actin and myosin. Myosin-II, which assemble as minifilaments consisting of tens of myosin heads, are rather bulky structures and hence a concern could be that steric considerations might obstruct the emergence of nanoclustering. Here, using coarse-grained, agent-based simulations that respect the size of constituents, we find that in the presence of steric hindrance, the patterns exhibited by actomyosin in two dimensions, do not resemble the steady state patterns observed in our in-vitro reconstitution of actomyosin on a supported bilayer. We then perform simulations in a thin rectangular slab, allowing the separation of a layer of actin filaments from those of myosin-II minifilaments. This recapitulates the observed features of in-vitro patterning. Using super resolution microscopy, we find direct evidence for stratification in our in-vitro system. Our study suggests the possibility that molecular stratification may be an important organising feature of the cortical cytoskeleton in-vivo

    Similar works