Since the persuasive determination of the time-delay in Q0957+561, much
interest has centered around shifting and subtracting the A and B light-curves
to look for residuals due to microlensing. Solar mass objects in the lens
galaxy produce variations on timescales of decades, with amplitudes of a few
tenths of a magnitude, but MACHO's (with masses of order 10−3 to
10−7M⊙) produce variations at only the 5% level. To detect such small
variations, highly precise photometry is required.
To that end, we have used 200 observations over three nights to examine the
effects of seeing on the light-curves. We have determined that seeing itself
can be responsible for correlated 5% variations in the light-curves of A and B.
We have found, however, that these effects can be accurately removed, by
subtracting the light from the lens galaxy, and by correcting for cross
contamination of light between the closely juxtaposed A and B images. We find
that these corrections improve the variations due to seeing from 5% to a level
only marginally detectable over photon shot noise (0.5%).Comment: 21 Pages with 9 PostScript figures, AASTeX 4 (preprint style