We consider inhomogeneous big bang nucleosynthesis in light of the present
observational situation. Different observations of He-4 and D disagree with
each other, and depending on which set of observations one uses, the estimated
primordial He-4 corresponds to a lower baryon density in standard big bang
nucleosynthesis than what one gets from deuterium. Recent Kamiokande results
rule out a favorite particle physics solution to this tension between He-4 and
D. Inhomogeneous nucleosynthesis can alleviate this tension, but the more
likely solution is systematics in the observations. The upper limit to Omega_b
from inhomogeneous nucleosynthesis is higher than in standard nucleosynthesis,
given that the distance scale of the inhomogeneity is near the optimal value,
which maximizes effects of neutron diffusion. Possible sources of baryon
inhomogeneity include the QCD and electroweak phase transitions. The distance
scale of the inhomogeneities arising from the electroweak transition is too
small for them to have a large effect on nucleosynthesis, but the effect may
still be larger than some of the other small corrections recently incorporated
to SBBN codes.Comment: 12 pages, 8 figures, REVTe