V. parahaemolyticus effector modulates host metabolism

Abstract

Vibrio parahaemolyticus is a Gram-negative halophilic pathogen that frequently causing acute gastroenteritis and occasional wound infection. V. parahaemolyticus contains several virulent factors, including Type III secretion systems (T3SSs) and thermostable direct hemolysin (TDH). In particular, T3SS1 is a potent cytotoxic inducer, and T3SS2 is essential for causing acute gastroenteritis. Although much is known about V. parahaemolyticus’s effector manipulating host signaling transductions, little is known about the host metabolomic changes modulated by V. parahaemolyticus. To address this knowledge gap, we performed a metabolomic analysis of the epithelial cells during V. parahaemolyticus infection using capillary electrophoresis–time-of-flight mass spectrometry (CE-TOF/MS). Our results revealed significant metabolomic perturbations upon V. parahaemolyticus infection. Moreover, we identified that T3SS1’s VopQ effector was responsible for inducing the significant metabolic changes in the infected cells. The VopQ effector dramatically altered the host cell’s glycolytic, tricarboxylic acid cycle (TCA), amino acid metabolisms. VopQ effector disrupted host cell redox homeostasis by depleting cellular glutathione and subsequently increasing the level of reactive oxygen species (ROS) production

    Similar works