PBE-CC: Congestion Control via Endpoint-Centric, Physical-Layer Bandwidth Measurements

Abstract

Wireless networks are becoming ever more sophisticated and overcrowded, imposing the most delay, jitter, and throughput damage to end-to-end network flows in today's internet. We therefore argue for fine-grained mobile endpoint-based wireless measurements to inform a precise congestion control algorithm through a well-defined API to the mobile's wireless physical layer. Our proposed congestion control algorithm is based on Physical-Layer Bandwidth measurements taken at the Endpoint (PBE-CC), and captures the latest 5G New Radio innovations that increase wireless capacity, yet create abrupt rises and falls in available wireless capacity that the PBE-CC sender can react to precisely and very rapidly. We implement a proof-of-concept prototype of the PBE measurement module on software-defined radios and the PBE sender and receiver in C. An extensive performance evaluation compares PBE-CC head to head against the leading cellular-aware and wireless-oblivious congestion control protocols proposed in the research community and in deployment, in mobile and static mobile scenarios, and over busy and quiet networks. Results show 6.3% higher average throughput than BBR, while simultaneously reducing 95th percentile delay by 1.8x

    Similar works