Optimal Witnessing of Healthcare IoT Data Using Blockchain Logging Contract

Abstract

Verification of data generated by wearable sensors is increasingly becoming of concern to health service providers and insurance companies. There is a need for a verification framework that various authorities can request a verification service for the local network data of a target IoT device. In this paper, we leverage blockchain as a distributed platform to realize an on-demand verification scheme. This allows authorities to automatically transact with connected devices for witnessing services. A public request is made for witness statements on the data of a target IoT that is transmitted on its local network, and subsequently, devices (in close vicinity of the target IoT) offer witnessing service. Our contributions are threefold: (1) We develop a system architecture based on blockchain and smart contract that enables authorities to dynamically avail a verification service for data of a subject device from a distributed set of witnesses which are willing to provide (in a privacy-preserving manner) their local wireless measurement in exchange of monetary return; (2) We then develop a method to optimally select witnesses in such a way that the verification error is minimized subject to monetary cost constraints; (3) Lastly, we evaluate the efficacy of our scheme using real Wi-Fi session traces collected from a five-storeyed building with more than thirty access points, representative of a hospital. According to the current pricing schedule of the Ethereum public blockchain, our scheme enables healthcare authorities to verify data transmitted from a typical wearable device with the verification error of the order 0.01% at cost of less than two dollars for one-hour witnessing service.Comment: 12 pages, 12 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions