Forcing as a computational process

Abstract

We investigate how set-theoretic forcing can be seen as a computational process on the models of set theory. Given an oracle for information about a model of set theory ⟨M,∈M⟩\langle M,\in^M\rangle, we explain senses in which one may compute MM-generic filters GβŠ†P∈MG\subseteq\mathbb{P}\in M and the corresponding forcing extensions M[G]M[G]. Specifically, from the atomic diagram one may compute GG, from the Ξ”0\Delta_0-diagram one may compute M[G]M[G] and its Ξ”0\Delta_0-diagram, and from the elementary diagram one may compute the elementary diagram of M[G]M[G]. We also examine the information necessary to make the process functorial, and conclude that in the general case, no such computational process will be functorial. For any such process, it will always be possible to have different isomorphic presentations of a model of set theory MM that lead to different non-isomorphic forcing extensions M[G]M[G]. Indeed, there is no Borel function providing generic filters that is functorial in this sense.Comment: 26 pages. Inquiries and commentary can be made at http://jdh.hamkins.org/forcing-as-a-computational-process. Minor updates with version

    Similar works

    Full text

    thumbnail-image

    Available Versions