Active Vision-Based Guidance with a Mobile Device for People with Visual Impairments

Abstract

The aim of this research is to determine whether an active-vision system with a human-in-the-loop can be implemented to guide a user with visual impairments in finding a target object. Active vision techniques have successfully been applied to various electro-mechanical object search and exploration systems to boost their effectiveness at a given task. However, despite the potential of intelligent visual sensor arrays to enhance a user’s vision capabilities and alleviate some of the impacts that visual deficiencies have on their day-to-day lives, active vision techniques with human-in-the-loop remains an open research topic. In this thesis, an active guidance system is presented, which uses visual input from an object detector and an initial understanding of a typical room layout to generate navigation cues that assist a user with visual impairments in finding a target object. A complete guidance system prototype is implemented, along with a new audio-based interface and a state-of-the-art object detector, onto a mobile device and evaluated with a set of users in real environments. The results show that an active guidance approach performs well compared to other unguided solutions. This research highlights the potential benefits of the proposed active guidance controller and audio interface, which could enhance current vision-based guidance systems and travel aids for people with visual impairments

    Similar works