Shoreline armoring disrupts marine-terrestrial connectivity in the Salish Sea, with consequences for invertebrates, fish, and birds

Abstract

Within the marine-terrestrial ecotone, upper intertidal “wrack zones” accumulate organic debris from algae, seagrass, and terrestrial plant sources and provide food and shelter for many organisms. We conducted detailed surveys of wrack and log accumulations and supralittoral invertebrates in spring and fall over 3 years at 29 armored-unarmored beach pairs in Puget Sound, WA, USA. Additionally, behavioral observations of juvenile salmon (Oncorhynchus spp.) and birds were conducted at 6 pairs. Armored beaches had substantially less wrack overall, a lower proportion of terrestrial plant material in the wrack, and far fewer logs. Armored beaches had significantly fewer invertebrates and differed from unarmored beaches in their taxonomic composition. Unarmored invertebrate assemblages were dominated by talitrid amphipods and insects, and were correlated with the amount of beach wrack and logs, the proportion of terrestrial material in wrack, and the maximum elevation of the beach. Shoreline armoring influenced juvenile salmon distribution, with fewer overall observations and fish in deeper water at armored beaches, but their feeding rates were relatively high at all sites. Terrestrial birds were commonly observed foraging among beach wrack and logs at unarmored beaches, but were largely absent from armored beaches. This study demonstrates that shoreline armoring disrupts marine-terrestrial connectivity, affecting the amount and type of organic material delivered to the nearshore ecotone in the form of wrack and logs, the abundance and taxonomic composition of supralittoral invertebrates, and the distribution and behavior of secondary consumers (juvenile salmon and birds)

    Similar works