Preterm infants face difficulties in maintaining their body temperature due to low metabolic rates of heat generation. Therefore, using incubators and radiant warmers is crucial for their comfort and health. The objective of the present work is to analyze the heat transfer processes for a preterm infant nursed in a simplified incubator under two different operating conditions: in the first one a classical simple incubator is considered and in the second case radiant heaters are used. This is achieved by using ANSYS Fluent 19.0 which his based on the finite volume method to discretize the Navier-Stokes, energy and radiation transfer equations. Conduction, convection and radiation heat transfer modes are modelled in the simulations and coupled to empirical correlations for metabolic heat generation and evaporative heat losses. The different incubator scenarios considered here are compared in terms of convection and radiation heat losses and skin temperature to access the thermal comfort of the preterm infant