research

Maximal subgroups of multi-edge spinal groups

Abstract

A multi-edge spinal group is a subgroup of the automorphism group of a regular p-adic rooted tree, generated by one rooted automorphism and a finite number of directed automorphisms sharing a common directing path. We prove that torsion multi-edge spinal groups do not have maximal subgroups of infinite index. This generalizes a result of Pervova for GGS-groups

    Similar works

    Available Versions