USING VIRTUAL REALITY TO INVESTIGATE ‘PROTEAN’ ANTI-PREDATOR BEHAVIOUR

Abstract

Prey animals have evolved a wide variety of behaviours to combat the threat of predation, many of which have received considerable empirical and theoretical attention and are generally well understood in terms of their function and mechanistic underpinning. However, one of the most commonly observed and taxonomically widespread antipredator behaviours of all has, remarkably, received almost no experimental investigation: so-called ‘protean’ behaviour. This is defined as ‘behaviour that is sufficiently unpredictable to prevent a predator anticipating in detail the future position or actions of its prey’. In this thesis, I have elucidated the mechanisms that allow protean behaviour to be an effective anti-predatory response. This was explored with two approaches. Firstly, through the novel and extremely timely use of virtual reality to allow human ‘predators’ to attack and chase virtual prey in three-dimensions from a first-person perspective, thereby bringing the realism that has been missing from previous studies on predator-prey dynamics. Secondly through the three-dimensional tracking of protean behaviour in a highly tractable model species, the painted lady butterfly (Vanessa cardui). I explored this phenomenon in multiple contexts. Firstly, I simulated individual protean prey and explored the effects of unpredictability in their movement rules with respect to targeting accuracy of human ‘predators’ in virtual reality. Next, I examined the concept of ‘protean insurance’ via digitised movements of the painted lady butterfly, exploring the qualities of this animals’ movement paths related to human targeting ability. I then explored how the dynamics of animal groupings affected protean movement. Specifically, I investigated how increasing movement path complexity interacted with the well-documented ‘confusion effect’. I explored this question using both an experimental study and a VR citizen science game disseminated to the general public via the video game digital distribution service ‘Steam’. Subsequently, I explored another phenomenon associated with groupings of prey items; the ‘oddity effect’, which describes the preferential targeting of phenotypically odd individuals by predators. Typically, this phenomenon is associated with oddity of colouration or size. In this case, I investigated whether oddity of protean movement patterns relative to other group members could induce a ‘behavioural oddity effect’. Finally, I used a specialised genetic algorithm (GA) that was driven by human performance with respect to targeting prey items. I investigated the emergent protean movement paths that resulted from sustained predation pressure from humans. Specifically, I examined the qualities of the most fit movement paths with respect to control evolutions that were not under the selection pressure of human performance (randomised evolution). In the course of this thesis, I have gained a deeper understanding of a near ubiquitous component of predator prey interactions that has until recently been the subject of little empirical study. These findings provide important insights into the understudied phenomenon of protean movement, which are directly applicable to predator –prey dynamics within a broad range of taxa

    Similar works