Modeling of human body biomechanics resulting from blast exposure is very challenging because of the complex geometry and the substantially different materials involved. We have developed anatomy based high-fidelity finite element model (FEM) of the human body and finite volume model (FVM) of air around the human. The FEM model was used to accurately simulate the stress wave propagation in the human body under blast loading. The blast loading was generated by simulating C4 explosions, via a combination of 1-D and 3-D computational fluid dynamics (CFD) formulations. By employing the coupled Eulerian-Lagrangian fluid structure interaction (FSI) approach we obtained the parametric response of the human brain by the blast wave impact. We also developed the methodology to solve the strong interaction between cerebrospinal fluids (CSF) and the surrounding tissue for the closed-head impact. We presented both the arbitrary Lagrangian Eulerian (ALE) method and a new unified approach based on the material point method (MPM) to solve fluid dynamics and solid mechanics simultaneously. The accuracy and efficiency of ALE and MPM solvers for the skull-CSF-brain coupling problem was compared. The presented results suggest that the developed coupled models and techniques could be used to predict human biomechanical responses in blast events, and help design the protection against the blast induced TBI