Elastic scattering on nucleons, \nu N -> N \nu, is the dominant supernova
(SN) opacity source for \mu and \tau neutrinos. The dominant energy- and
number-changing processes were thought to be \nu e^- -> e^- \nu and \nu\bar \nu
e^+ e^- until Suzuki (1993) showed that the bremsstrahlung process \nu\bar
\nu NN NN was actually more important. We find that for energy exchange,
the related ``inelastic scattering process'' \nu NN NN \nu is even more
effective by about a factor of 10. A simple estimate implies that the \nu_\mu
and \nu_\tau spectra emitted during the Kelvin-Helmholtz cooling phase are much
closer to that of \nu\bar_e than had been thought previously. To facilitate a
numerical study of the spectra formation we derive a scattering kernel which
governs both bremsstrahlung and inelastic scattering and give an analytic
approximation formula. We consider only neutron-neutron interactions, we use a
one-pion exchange potential in Born approximation, nonrelativistic neutrons,
and the long-wavelength limit, simplifications which appear justified for the
surface layers of a SN core. We include the pion mass in the potential and we
allow for an arbitrary degree of neutron degeneracy. Our treatment does not
include the neutron-proton process and does not include nucleon-nucleon
correlations. Our perturbative approach applies only to the SN surface layers,
i.e. to densities below about 10^{14} g cm^{-3}.Comment: 36 pages, LaTeX, 6 postscript figs included, matches version accepted
for publication in Astrophysical Journa