Abstract

Gamma rays with energies greater than 7 TeV from the Crab pulsar/nebula have been observed at large zenith angles, using the Imaging Atmospheric Technique from Woomera, South Australia. CANGAROO data taken in 1992, 1993 and 1995 indicate that the energy spectrum extends up to at least 50 TeV, without a change of the index of the power law spectrum. The observed differential spectrum is \noindent (2.01±0.36)×10−13(E/7TeV)−2.53±0.18TeV−1cm−2s−1(2.01\pm 0.36)\times 10^{-13}(E/{7 TeV})^{-2.53 \pm 0.18} TeV^{-1}cm^{-2}s^{-1} between 7 TeV and 50 TeV. There is no apparent cut-off. The spectrum for photon energies above ∼\sim10 TeV allows the maximum particle acceleration energy to be inferred, and implies that this unpulsed emission does not originate near the light cylinder of the pulsar, but in the nebula where the magnetic field is not strong enough to allow pair creation from the TeV photons. The hard gamma-ray energy spectrum above 10 TeV also provides information about the varying role of seed photons for the inverse Compton process at these high energies, as well as a possible contribution of π∘\pi ^{\circ}-gamma rays from proton collisions.Comment: 19 pages, 4 figures, LaTeX2.09 with AASTeX 4.0 maros, to appear in Astrophys. J. Let

    Similar works