Foi conduzido um experimento de abate comparativo envolvendo 36 bovinos F1 Nelore x Red Angus (12 machos castrados, 12 machos inteiros e 12 fêmeas), com peso médio inicial de 274 kg, para determinar as exigências líquidas de proteína e energia para mantença e crescimento e as exigências líquidas para crescimento de macrominerais. Três animais de cada classe sexual (macho castrado, macho inteiro e fêmea) foram abatidos no início do experimento para determinação da composição corporal inicial. Os animais restantes foram aleatoriamente alocados em três tratamentos: alimentação ao nível de mantença (dieta fornecida ao nível de 1,2% do PV/dia, contendo 70% da matéria seca de silagem de milho) ou fornecimento de 0,75 ou 1,5 % do PV/dia de concentrado sendo a silagem de milho fornecida à vontade. As dietas foram isonitrogenadas (2% N, na base seca). O delineamento experimental proporcionou variação no consumo de energia metabolizável (CEM), peso vivo (PV) e ganho médio diário em peso (GMD) permitindo o desenvolvimento de equações de regressão para predizer as exigências líquidas energia e proteína para mantença (ELm e PLm, respectivamente) e para crescimento (energia retida, ER; e proteína retida, PR, respectivamente). Após 84 dias em confinamento, os animais foram abatidos. O trato gastrointenstinal vazio, órgãos, carcaças, cabeça, couro, cauda, patas, sangue e demais tecidos foram pesados para determinar o peso de corpo vazio (PCVZ). Cada parte foi pesada separadamente e amostrada para análise química. O consumo de matéria seca foi determinado individualmente e diariamente. Em cada período, foram coletadas amostras de fezes para determinação da digestibilidade da dieta. O antilog do intercepto da regressão linear do log da produção de calor (PC) no CEM foi utilizado para estimar a ELm (na base kcal/kg0,75 PCVZ/dia). A exigência de energia metabolizável para mantença foi calculada por iteração, assumido que o requerimento de mantença é o valor no qual a PC se iguala ao CEM na seguinte equação: PC = β0 × e(β1 × CEM). O coeficiente de inclinação da regressão da energia retida no CEM foi adotado como a eficiência de utilização da energia metabolizável para crescimento (Kg). Alternativamente, o intercepto dividido pelo Kg foi utilizado para calcular a exigência de energia metabolizável para mantença. A PR foi calculada por c + (d × PCVZ) + (e × ER) onde c, d e e são o intercepto e os coeficientes da regressão múltipla da PR no PCVZ e ER, respectivamente. O log do conteúdo corporal de cada mineral no PCVZ foi regredido no log do PCVZ para estimar as exigências líquidas de cada mineral por kg de ganho de PCVZ (GCPVZ). Uma meta-análise foi conduzida para determinar as exigências líquidas de energia e proteína de machos inteiro, machos castrados e fêmeas Nelore, puros e cruzados, em crescimento. Um banco de dados com 16 estudos de abate comparativo (n=389 animais) foi construído para fornecer informações necessárias para predizer os requerimentos líquidos de energia e proteína para mantença e crescimento. Os dados foram analisados utilizando-se um modelo de coeficientes aleatórios, considerando os estudos como efeito aleatório e a classe sexual (machos inteiros, machos castrados e fêmeas; n = 262, 103 e 24, respectivamente) e o grupo genético como efeitos fixos. Para o experimento descrito, não houve diferença na ELm entre as classes sexuais de bovinos F1 Nelore x Red Angus. Os dados agrupados indicaram ELm de 71,2 kcal·kg-0.75 PCVZ·dia-1, com eficiência parcial de utilização da energia metabolizável em energia líquida para mantença de 0,71. A eficiência parcial de utilização da energia metabolizável em energia líquida para crescimento foi de 0,54 para machos inteiros, 0,47 para machos castrados e 0,54 para fêmeas. A exigência de energia líquida para crescimento de machos castrados foi similar à de fêmeas, entretanto as exigências de ER de machos castrados e fêmeas foram 18,7% superiores à de machos inteiros. A PLm não diferiu entre as classes sexuais apresentando média de 2,53 g PB·kg-0,75 PCVZ·dia-1. Similarmente, a PR não diferiu entre as classes sexuais. A porcentagem da energia retida depositada como proteína (%ERp) aumentou exponencialmente à medida que a concentração energética no ganho (ERc, Mcal/kg GCPVZ) diminuiu. Não houve diferença nas exigências líquidas para crescimento de macrominerais entre classes sexuais. As equações dos dados em conjunto das exigências líquidas para crescimento (g/kg GCPVZ) foram: 0,3327 × PCVZ0,6367 para Ca, 0,1121 × PCVZ-0,5615 para P, 0,0108 × PCVZ-0,3992 para Na, 0,004 × PCVZ-0,153 para K e 0,0036 × PCVZ-0,462 para Mg. Para a meta-análise, não houve diferença entre as classes sexuais e os grupos genéticos para a ELm. Os dados agrupados indicaram ELm de 75 kcal/kg0,75 PCVZ, com uma eficiência parcial de utilização da energia metabolizável como ELm de 0,67. A ER diferiu entre as classes sexuais e tendeu a diferença (P=0,06) entre os grupos genéticos. As equações de ER foram: 0,0514 × PCVZ0,75 × GPCPVZ1,070, para machos inteiros; 0,0700 × PCVZ0,75 × GPCPVZ1,070, para machos castrados; e 0,0771 × PCVZ0,75 × GPCPVZ1,070, para fêmeas. A eficiência parcial de utilização da EM para ER não foi diferente entre classes sexuais ou grupos genéticos, apresentando média de 0,44. Não houve diferença na exigência de PLm entre classes sexuais ou grupos genéticos; a PLm geral foi de 1,74 g·kg- 0,75 PCVZ·dia-1. A PR, g/dia, não diferiu entre classes sexuais ou grupos genéticos; a equação geral foi GCPVZ × (217 12,8 × ER/GCPVZ). A %ERp decresceu exponencialmente à medida que a ERc aumentou. Como não houve efeito de estudo, os dados foram agrupados e a equação geral para predizer %ERp foi 0,101 + 1,667 × e(- 0,660 × ERc ). Nossos resultados não sustentam a hipótese de que machos inteiros têm exigências de ELm superiores às de machos castrados e fêmeas. Similarmente, não houve diferença para as exigências de PLm entre as classes sexuais e grupos genéticos. Entretanto, ER de machos castrados foi superior e inferior à de machos inteiros e fêmeas, respectivamente. Embora a porcentagem da energia retida como proteína tenha correlacionado negativamente com a ERc, não houve diferenças para PR entre machos inteiros, machos castrados e fêmeas.A comparative slaughter trial was conducted with 36 F1 Nellore x Red Angus calves (12 steers, 12 bulls, and 12 heifers), averaging 274 kg BW, to assess the net requirements of protein and energy for growth and maintenance and the net requirements of macro-minerals for growth. Three animals from each group (i.e., steers, bulls, and heifers) were slaughtered at the beginning of the trial to determine the initial body composition. The remaining calves were randomly assigned to 3 treatments: maintenance level (diet containing 70% of DM as corn silage fed at 1.2% of BW daily) or fed concentrate at 0.75 or 1.5% of BW daily with corn silage available for ad libitum consumption. The diets were isonitrogenous (2% N, DM basis). The experimental design provided ranges in ME intake, BW, and ADG for the development of regression equations to predict the maintenance requirements for net energy and net protein (NEm and NPm, respectively) and the growth requirement for net energy and net protein (NEg and NPg, respectively). After 84 d of growth, cattle were slaughtered. The cleaned gastrointestinal tracts, organs, carcasses, heads, hides, tails, feet, blood, and tissues were weighed to measure empty BW (EBW). These parts were ground separately and sub-sampled for chemical analyses. For each animal within a period, DMI was measured daily and samples of feces were collected to determine diet digestibility. The antilog of the intercept of the linear regression between the log of heat production (HP) on metabolizable energy intake (MEI) was used to estimate the NEm (on a kcal/kg0.75 of EBW daily). The ME required for maintenance (MEm) was calculated by iteration, assuming that the maintenance requirement is the value at which HP is equal to MEI according to this equation: HP = β0 × e(β1 × MEI). The slope of the regression of retained energy (RE) on MEI was assumed to be the efficiency of energy utilization for growth (Kg). Alternatively, the intercept divided by the slope (Kg) was used to compute MEm. The NPm was assumed to be the intercept of the linear regression of the retained N on N intake. The NEg was calculated as a × EBW0.75 × EWGb, where EBW is empty BW; a and b are the antilog of the intercept and the slope of the linear regression of the log of the RE on the log of the empty body gain (EWG). The NPg was calculated as c + (d × EBW) + (e × RE) where c, d, and e are the intercept and slopes of the multiple regression of the retained protein on the EBW and RE, respectively. The log of the contents of each mineral in the EBW was regressed on the log of the EBW to estimate the net requirement for each mineral per kg of empty body gain (EBG). A meta-analysis was conducted to determine net energy and net protein requirements of growing bulls, steers, and heifers of Nellore purebred and Nellore × Bos taurus crossbreds. A database of 16 comparative slaughter studies (n = 389 animals) was gathered to provided enough information to develop equations to predict the NEm, NEg, NPm and NPg. The data were analyzed using a random coefficients model, considering studies as random effects, and genders (bulls, steers, and heifers; n = 262, 103 and 24, respectively) and breeds as fixed effects. For the experiment, there were no differences in NEm (P = 0.06) among genders for F1 Nellore x Red Angus cattle. The combined data indicated a NEm of 71.2 kcal·kg- 0.75 of EBW·d-1, with a partial efficiency of use of ME to NE for maintenance of 0.71. The partial efficiency of use of ME to NE for growth was 0.54 for bulls, 0.47 for steers, and 0.54 for heifers. The NEg for steers and heifers were similar but were 18.7% greater than for bulls. The NPm did not differ among genders and averaged 2.53 g NPm·kg-0.75 of EBW·d- 1. Likewise, NPg was not different among genders. The percentage of retained energy deposited as protein (%REp) increased as the content of retained energy in the gain (REc, Mcal/kg of EWG) decreased. There were no differences in the net requirements for growth of macrominerals among genders. The equations of the pooled data of the net requirements for growth (g/kg EWG) were: 0.3326 × EBW 0.6367 for Ca, 0.1121 × EBW -0.5615 for P, 0.0108 × EBW -0.3992 for Na, 0.004 × EBW -0.153 for K, and 0.0036 × EBW -0.462 for Mg. For the meta-analisys study, there were no differences in NEm among genders and breeds. The combined data indicated a NEm requirement of 75 kcal/kg0.75 of EBW with a partial efficiency of use of ME to NEm of 0.67. The NEg requirement was different (P = 0.009) among genders and tended (P = 0.06) to be different among breeds. The equation for NEg for bulls was 0.0514 × EBW0.75 × EWG1.070, for steers it was 0.0700 × EBW0.75 × EWG1.070; and for heifers it was 0.0771 × EBW0.75 × EWG1.070. The partial efficiency of use of ME to NEg was not different among genders and breeds, and averaged 0.44. There were no differences in NPm requirement among genders and breeds; the overall NPm requirement was 1.74 g of NP·kg-0.75 EBW·d-1. The overall MP requirement for maintenance was 2.59 g of MP·kg-0.75 EBW·d-1. The NPg requirement, g/d, was not different among genders and breeds; the overall equation was EWG × (217 - 12.8 × RE/EWG), where RE is Mcal/d. %REp decreased exponentially as the REc incresead. Because no study effect was observed, we pooled the data across studies and the overall equation to predict %REp was 0.101 + 1.667 × e(-0.660 × REc ). Our results do not support the hypothesis that bulls have greater NEm requirements than steers and heifers. Likewise, no significant differences in the NPm requirements among bulls, steers, and heifers were detected. Nonetheless, the NEg requirement of steers was greater than for bulls and lesser than for heifers. Even though the %REp was negatively correlated with REc, our findings indicated no differences in NPg requirement for bulls, steers, and heifers.Fundação de Amparo a Pesquisa do Estado de Minas Gerai