research

Morphology and Surface Brightness Evolution of z\sim1.1 Radio Galaxies

Abstract

We use K−bandimagingtoinvestigatetheangularsizeandmorphologyof106Cradiogalaxies,atredshiftsK-band imaging to investigate the angular size and morphology of 10 6C radio galaxies, at redshifts 1\leq z\leq 1.4.Twoappeartobeundergoingmergers,anothercontainstwointensitypeaksalignedwiththeradiojets,whiletheothersevenappearconsistentwithbeingnormalellipticalsintheK−band.Intrinsichalf−lightradiiareestimatedfromtheareasofeachradiogalaxyimageaboveaseriesofthresholds.The6Cgalaxyradiiarefoundtobesignificantlysmallerthanthoseofthemoreradioluminous3CRgalaxiesatsimilarredshifts.ThiswouldindicatethatthehighermeanK−bandluminosityofthe3CRgalaxiesresultsfromadifferenceinthesizeofthehostgalaxies,andnotsolelyfromadifferenceinthepoweroftheactivenuclei.Thesize−luminosityrelationofthe. Two appear to be undergoing mergers, another contains two intensity peaks aligned with the radio jets, while the other seven appear consistent with being normal ellipticals in the K-band. Intrinsic half-light radii are estimated from the areas of each radio galaxy image above a series of thresholds. The 6C galaxy radii are found to be significantly smaller than those of the more radioluminous 3CR galaxies at similar redshifts. This would indicate that the higher mean K-band luminosity of the 3CR galaxies results from a difference in the size of the host galaxies, and not solely from a difference in the power of the active nuclei. The size-luminosity relation of the z\sim 1.16Cgalaxiesindicatesa1.0−−1.8magenhancementoftherest−frameR−bandsurfacebrightnessrelativetoeitherlocalellipticalsofthesamesizeorFRIIradiogalaxiesat 6C galaxies indicates a 1.0--1.8 mag enhancement of the rest-frame R-band surface brightness relative to either local ellipticals of the same size or FRII radio galaxies at z<0.2.The3CRgalaxiesat. The 3CR galaxies at z\sim 1.1showacomparableenhancementinsurfacebrightness.Themeanradiusofthe6Cgalaxiessuggeststhattheyevolveintoellipticalsof show a comparable enhancement in surface brightness. The mean radius of the 6C galaxies suggests that they evolve into ellipticals of L\sim L^*luminosity,andisconsistentwiththeirlowredshiftcounterpartsbeingrelativelysmallFRIIgalaxies,afactor luminosity, and is consistent with their low redshift counterparts being relatively small FRII galaxies, a factor \sim 25lowerinradioluminosity,orsmallFRIgalaxiesafactorof lower in radio luminosity, or small FRI galaxies a factor of \sim 1000$ lower in radio luminosity. Hence the 6C radio galaxies may undergo at least as much optical and radio evolution as the 3CR galaxies.Comment: 17 pages, 7 postscript figures, TEX, submitted to MNRA

    Similar works