Available X-ray data are collected and organized concerning the iron and gas
content of galaxy clusters and groups, together with the optical luminosity,
mass and iron abundance of cluster galaxies. Several astrophysical inferences
are then drawn, including the evidence for rich clusters having evolved without
much baryon exchange with their surrondings, and having experienced very
similar star formation histories. Groups are much gas-poor compared to
clusters, and appear instead to have shed a major fraction of their original
cosmic share of baryons, which indicates that galaxy clusters cannot have
formed by assembling groups similar to the present day ones. It is argued that
this favors low-Ω universes, in which the growth of rich clusters is
virtually complete at high redshifts. It is also argued that elemental
abundance ratios in clusters are nearly solar, which is consistent with a
similar proportion of supernovae of Type Ia and Type II having enriched both
the solar neghborhood as well clusters as a whole. Much of the iron in clusters
appears to reside in the intracluster medium rather than inside galaxies. It
appears that the baryon to star conversion in clusters has been nearly as
efficient as currently adopted for the universe as a whole. Yet the metallicity
of the clusters is ∼5 times higher than the global metallicity adopted
for the nearby universe. It is concluded that the intergalactic medium should
have a metallicity ∼1/3 solar if stellar nucleosynthesis has proceeded in
stars within field galaxies with the same efficiency as in stars within
clusters of galaxies.Comment: AASTex Latex, 29 pages, 6 figure